Couverture de Advanced data-driven approaches for modelling and classification
Titre du livre:

Advanced data-driven approaches for modelling and classification

with applications to automotive engine fault detection and polymer extrusion control

LAP LAMBERT Academic Publishing (12-11-2012 )

Books loader

Omni badge éligible au bon d'achat
ISBN-13:

978-3-659-30141-4

ISBN-10:
3659301418
EAN:
9783659301414
Langue du livre:
Anglais
texte du rabat:
In this book, the Fast Recursive Algorithm (FRA) and Two-Stage Selection (TSS) methods proposed by Prof. Li and Prof. Irwin have been improved to integrate Bayesian regularisation to prevent over-fitting and leave-one-out cross validation for automatic model construction. To further enhance model generalization capability, some heuristic methods were also embedded in the two-stage selection to optimize the non-linear parameters involved in subset model construction. These include Particle Swarm Optimization (PSO), Defferential Evolution (DE), and Extreme Learning Machine (ELM). The effectiveness and efficiency of all these advanced methods have been confirmed on both well-known benchmarks and real world data sets from automotive engine and polymer extrusion applications.
Maison d'édition:
LAP LAMBERT Academic Publishing
Site Web:
https://www.lap-publishing.com/
de (auteur) :
Jing Deng
Numéro de pages:
160
Publié le:
12-11-2012
Stock:
Disponible
Catégorie:
Électronique, Electrotechnique, Technologie des communications
Prix:
59.00 €
Mots-clés:
PSO, De, Bayesian learning, Elm, Nonlinear System Identification, Subset selection, RBF network, Leave-one-out cross validation

Books loader

Lettre d'information

Adyen::diners Adyen::jcb Adyen::discover Adyen::amex Adyen::mc Adyen::visa Adyen::cup Adyen::unionpay Adyen::paypal Paypal CryptoWallet Virement bancaire

  0 produits dans le panier
Modifier le contenu du panier
Loading frontend
LOADING