Buchcover von Forecasting of Electricity Consumption using Gaussian Processes
Buchtitel:

Forecasting of Electricity Consumption using Gaussian Processes

GlobeEdit (17.06.2014 )

Books loader

Omni badge gutscheinfähig
ISBN-13:

978-3-639-80666-3

ISBN-10:
3639806662
EAN:
9783639806663
Buchsprache:
Englisch
Klappentext:
On a broad view, the problem of forecasting electricity consumption can be categorized under machine learning, which is the study of computer algorithms that improve automatically through experience. In order to predict how a trend will continue, the prediction model should be able to generalize the knowledge in historical data to unseen future. In this book, the following areas has been covered: ✪ The use of Gaussian Processes for electricity consumption forecasting ✪ Use of kNN similarity search with Gaussian Processes to reduce the size of the training data (reduce computational cost) ✪ Neural Networks for electricity consumption forecasting ✪ Exploratory Data Analysis for feature selection and visual analysis of data ✪ Combining kNN similarity search with the classical linear regression model to improve prediction accuracy. ✪ Comparison of different prediction models including Gaussian Processes, Neural Networks and Local Linear Regression.
Verlag:
GlobeEdit
Webseite:
https://www.globeedit.com
von (Autor):
Girma Kejela
Seitenanzahl:
100
Veröffentlicht am:
17.06.2014
Lagerbestand:
Lieferbar
Kategorie:
Informatik, EDV
Preis:
3.546,31 руб
Stichworte:
machine learning, Neural Networks, Gaussian Processes, local linear regression, K-Nearest Neighbors, Electricity Consumption Forecasting, Feature selection, regression, prediction, Data analysis, linear regression, Data Structure, load forecasting, energy forecasting, Data Mininig, exploratory data analysis, KD tree, Gaussian

Books loader

Newsletter

Adyen::diners Adyen::jcb Adyen::discover Adyen::amex Adyen::mc Adyen::visa Adyen::cup Adyen::unionpay Paypal CryptoWallet

  0 Produkte im Warenkorb
Warenkorb bearbeiten
Loading frontend
LOADING